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Collaborative work groups that span multiple locations and time zones, or “follow the

sun,” create a growing demand for creating new technologies and methodologies that

enable traditional spatial and temporal separations to be surmounted in an effective and

productive manner. The hurdles faced by members of such virtual teams are in three key

areas: differences in concepts and terminologies used by the different teams, differences

in understanding the problem domain under consideration, and differences in training,

knowledge, and skills that exist across the teams. These reasons provide some of the basis

for the delineation of new architectural approaches that can normalize knowledge and

provide reusable artifacts in a knowledge repository.
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IntroductionIntroductionIntroduction

Introduction

The increasing prevalence of collaborative work groups that span multiple locations and

time zones create a growing demand for creating new technologies and methodologies

that can enable traditional spatial and temporal separations to be surmounted in an

effective and productive manner. In the specific case of information technology (IT),

more than 380,000 professionals are currently focused exclusively on export oriented

activities (Aggarwal and Pandey, 2004). The hurdles faced by members of such virtual

teams are in three key areas: (i) Differences in concepts and terminologies used by the

different teams; (ii) Differences in understanding the problem domain under

consideration; and (iii) Differences in training, knowledge, and skills that exist across the

teams (P. Wongthongtham, E. Chang, T.S. Dillon, I. Sommerville 2006). These reasons



provide some of the basis for the delineation of new architectural approaches that can

normalize knowledge and provide reusable artifacts in a knowledge repository.

This paper focuses on the issue of providing information systems agility, especially when

the work is outsourced from one country (or company) to another or as the work is

performed in multiple countries using a hybrid offshoring model such as the 24-Hour

Knowledge Factory concept (Gupta, Seshasai, Mukherji, Ganguly 2007). This paper also

deals with the issue of creating an evolving knowledge repository that can be used when

systems need to be redesigned or re-implemented.
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The Object Management Group (OMG) is actively involved in the creation of a

heterogeneous distributed object standard. In a departure from modeling standards, such

as the Common Object Request Broker Architecture (CORBA) and the related Data

Distribution Service (DDS), OMG moved towards the Unified Modeling Language

(UML) and the related standards of Meta-Object Facility (MOF), XML Data Interchange

(XMI), and Query Views Transformation (QVT). The latter standards provide a

foundation for the Model Drive Architecture (MDA). In an effort to bring UML and the

Semantic Web together, OMG is leading progress toward the Ontology Definition

Metamodel.

More specifically, MDA, as related to software engineering, composes a set of guidelines

for creating specifications structured as models. In MDA, functionality is defined using a

platform-independent model with a domain-specific language. The domain specific

language definition can be translated into platform-specific models by use of a Platform

Definition Model (PDM). The Ontology Definition Metamodel is an OMG specification

that links Common Logic and OWL/RDF ontologies with MDA. Common Logic being

an ISO standard for facilitating the exchange of knowledge and information in computer-

based systems, and Resource Description Framework (RDF) and Web Ontology

Language (OWL) being the latest examples of framework and related markup languages



for describing resources authored by the World Wide Web Consortium (W3C). OMG

and W3C standards are available online, at omg.org and w3.org, respectively.

Knowledge reuse has been previously explored with respect to organizational memory

systems, or knowledge repositories. Markus (2001) identified distinct situations in which

reuse arose according to the purpose of knowledge reuse and parties involved. The

knowledge reuse situations exist among producers who reuse their own knowledge, those

who share knowledge, novices seeking expert knowledge, and secondary knowledge

miners. The solutions to the problems of meeting the requirements of knowledge storage

or retrieval were presented as a combination of incentives and intermediaries.

In the context of allocation of IT resources, O’Leary (2001) conducted a case study of a

knowledge management system of a professional service firm concluding that service-

wise requirements for knowledge reuse should impact the design of knowledge systems.

For example, the studied firm contained three primary service lines, tax, consulting, and

audit. Differential reuse stemming from the relatively low reuse in the consulting service

line to high reuse in the tax line, leads to a particular allocation of knowledge bases,

software, hardware, and network resources.

O’Leary’s paper supports earlier work by Vanwelkenhuysen and Mizoguchi (1995)

which showed that knowledge reuse has at that point depended on organizational aspects

of knowledge systems. Their work suggested dimensions along which ontologies for

knowledge reuse may be built, based on workplace-adapted behaviors.

Knowledge reuse and agility is especially relevant to “follow the sun” models, similar in

spirit to the 24-Hour Knowledge Factory, and have been attepted by others. Carmel (1999,

pp. 27-32) describes one such project at IBM. In this early project, IBM established

several offshore centers in a hub-and-spoke model where the Seattle office acted as the

hub. Each offshored site was staffed by a phalanx, a mix of skill sets that were replicated

across each spoke. Work would be handed out by the Seattle hub and each spoke would



accomplish the given task and send the results back to Seattle. This hub-and-spoke

model necessitates specialization of the Seattle site. With only one site offering the

specialized service, the Seattle site quickly became overwhelmed. The original goal of

daily code drops could not be maintained.

A relevant case study involved the three distinct projects involving sites in the United

States and India. These three projects were generally considered a failure. Treinen and

Miller-Frost (2006) supply several lessons learned that are echoed in other studies,

particularly problems with continuity, misunderstanding and the lag time between cycles

of conversation. Cultural differences are also cited as problematic, especially with

respect to various assumptions that were held in lieu of well specified requirements and

planning.

Perhaps the most relevant study in respect to the 24-Hour Knowledge Factory, Follow the

Sun: Distributed Extreme Programming Development (Yap 2005) describes a globally

distributed, round-the-clock software development project. Here, a programming team

was distributed across three sites (US, UK, and Asia) and they used collective ownership

of code. One of the three sites already had knowledge of extreme programming. The

two remaining sites were coached on extreme programming practices prior to the

collaboration. These two sites believed that the first site had an advantage due to its

previous knowledge with extreme programming. The three sites also met in person,

which they felt helped the program start by building confidence in the members of other

sites. The team used Virtual Network Computing (VNC) and video conferencing to

facilitate communication. Hand-off of project artifacts initially consisted of a daily work

summary, but later grew to include knowledge learned and new objectives.

Xiaohu, et. al. (2004) discusses the situation where development teams were dispersed

globally, though, it seemed that each global unit was still responsible for its own module

of the project. The teams did not need to discuss development decisions with each other

unless they were related to interfacing or would affect another team. They used the



extreme programming method, but because of the global dispersal of teams, they lacked

the benefits of customer co-location and participation. They thought the inability to get

rapid customer feedback when the customer was in a different location adversely

impacted the development of the product and the development time. These issues could

easily impact development in a 24-Hour Knowledge Factory setting because customers in

one location would thus not be able to interact with all sites.

The attempted, and particularly the failed, “follow the sun” approaches highlight the need

for an agile knowledge ontology that more adequately manages the problem of change.
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Change is difficult, complex and risky because it usually has unintended side effects.

Each decision has many consequences, which in turn have many more. The Y2K problem

is a classic example of a seemingly innocuous design decision that snowballed into a

worldwide problem. The decision to use a two-digit representation of the year was

originally deemed to be prudent. Later, it was thought to be a problem that would cripple

computer systems when their clocks rolled over into the year 2000, since 00 is ambiguous.

Ultimately, it cost the world around $600 billion (((

(

López-Bassols, Vladimir, 1998) to

convert a two digit representation of the calendar year to four digits!
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Figure 1 shows the evolution of computing technology as researchers sought to tackle the

problem of change and to remain agile though increasingly more complex demands are

placed upon the technology.

Figure 1.

At the far left end of the spectrum lies hardware, originally physically and meticulously

programmed to perform relatively simple tasks. Machine code replaced the physical
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machine programming by the formulation of CPU-specific words, bit patterns

corresponding to different commands that can be issued to the machine. Each type of

CPU has its own machine code. Similarly, the CPU architecture has a corresponding

assembly language. As such, assembly language is not portable and does not increase

flexibility, but it does provide the essential abstractions that free the programmer from the

tedium of remembering numeric codes or calculating addresses (as was the case when

programming was accomplished through machine code). An assembly language is an

example of a second-generation language. Third generation languages, denoted by 3GL

in Figure 1, finally freed the task of programming from the underlying hardware. This is

a much overlooked, but crucial, example of adapting technology to find a solution to the

problem of change.

Since the time of the advent of 3GLs, programmers have been able to develop

applications without understanding the underpinnings of the machines they worked on.

Agility improved as programmers no longer needed to be hardware experts, their

programming expertise remained even as the underlying hardware became obsolete. As

we move along the timeline in Figure 1, we observe the adoption of new ideas that

further built upon the flexibility of those preceding them. As abstraction increases, so

does flexibility. The abstraction also allows for task modularity. With the advent of 3GLs,

the underlying arcane did not disappear, but instead became encapsulated in the tools

which make the 3GL abstraction possible, e.g. a C compiler or Java interpreter.

Compilers and interpreters translate the high-level language constructs into machine or

assembly code, thereby allowing for reuse of developed artifacts across any platform

having a compatible compiler or interpreter.

The more recent notion of component-based development (CBD) involves building

software systems using prepackaged software components (Ravichandran, T. 2005).

CBD involves reusing application frameworks, which provide the architecture for

assembling components into a software system. Components and frameworks may be

either developed in-house or externally procured. CBD typically involves using both in-

house developed and externally procured software components and frameworks. CBD



leverages the emergence of middleware and software objects standards to make software

reuse a reality (Ravichandran, T. 2005). Since CBD encourages the move toward more

modular systems built from reusable software artifacts, it is expected to enhance the

adaptability, scalability, and maintainability of the resultant software (Szyperski, C 1997).

CBD requires systems to be architected using a component framework necessitating

developers to think through the interrelationships between various elements of an

application system at a more granular level at an earlier stage in the development process

than in traditional development approaches (Sparling, M 2000).
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A good example of a business transformation tackling the issues of agility and change

through modularity is provided by IBM’s System/360 (Amdahl and Blaauw, 2000) in the

1960’s (Baldwin and Clark, 2000). The hardwired instruction sets of virtually all

computers in the 1950s imposed a high level of interdependence of design parameters.

Each computer was designed from scratch and each market niche was matched with a

different system. Searching for new ways for teams to work together on a project, IBM

led the effort to use modularity as a guiding principle. System/360 was the result of that

effort. Further, System/360 marks the point at which the industry was transformed from a

virtual monopoly to a modular cluster comprised of more than a thousand publicly traded

firms and many startups (Fergusson 2004).

What makes System/360 an important landmark in the agility effort is that it belongs to

the first family of computers that was designed with a clear distinction between

architecture and implementation. The architecture of each model in the 360 family was

introduced as an industry standard, while the system peripherals, such as disk drives,

magnetic tape drives, or communication interfaces, allowed the customer to configure the

system by selecting from this list. With the standardization of the architecture and

peripheral interfaces, IBM opened the doors for the commodity component market. With

its list of peripherals, System/360 allowed the technology to adapt to a customer’s needs.

Its backward compatibility tackled the problem of change in its own right, by allowing

customers to upgrade and replace their hardware without losing essential capabilities. The



idea of encapsulation of functionality and the standardization of system interfaces

inherent in System/360 is critical to understanding the importance of leveraging and reuse

of knowledge.
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Just as was the case with early computer technology decades ago, prior to 3GL in our

first example and System/360 in the second, today’s business rules are replicated in

dissimilar formats in intermingled ways in multiple information systems and business

processes. When any rule is changed, a concerted effort must be launched to make

modifications in multiple systems. It makes change and innovation complex and error-

prone. The framework described in this paper attempts to untangle business rules with an

ontology derived from the inherent structure of information. By untangling business rules

even in complex legacy models and systems, one gains the capability to represent specific

elements of business knowledge once, and only once, in a knowledge repository. Using

this repository, the specific elements of knowledge can be designed to naturally manifest

themselves, in appropriate forms, to suit the idiosyncrasies of different business contexts.

As business processes became more tightly coupled with automation, the lack of agility

in information systems became a serious bottleneck to product and process innovation.

Frameworks that have attempted to solve this problem include: Structured Programming,

Reusable Code Libraries, Relational Databases, Expert Systems, Object Technology,

CASE tools, Code generators and CAPE tools. They were not very effective partially

because they did not adequately address the ripple effects of change; ideally, business

rules and knowledge should be represented so that when we change a rule once,

corresponding changes should automatically ripple across all the relevant business

processes (Gupta, A. Mitra, A. 2006).

Knowledge transfer and reuse (Myopolous 1998, Zyl and Corbett 2000, Kingston 2002)

attain greater importance in the case of outsourcing. In order to achieve efficiency of

resource consumption, we need new approaches to facilitate encapsulation of knowledge

and the sharing of such knowledge among the relevant set of workers.
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Knowledge reuse is greatly aided by the existence of a knowledge repository; and the

creation of a knowledge repository requires a means for the encapsulating information.

Knowledge represents a coordinated set of information: rules of business, imposed by

man or nature, either explicitly stated or implied. Knowledge can be described in terms of

assertions and rules, allowing for the identification of constraints, issues, guidelines, and

caveats.

While meaning and understanding are abstract notions, they are rooted in the physical

world. We learned in chemistry that we can continually subdivide a substance before

reaching a building-block, the subdivision of which would disallow us from identifying

the substance and knowing its properties. Similarly, to identify the components of

knowledge, we must distinguish between assertions whose division will involve no loss

of information, and assertions whose division will sacrifice meaning: if an assertion is

decomposed into smaller parts and the information lost cannot be recovered by

reassembling the pieces. The fundamental rules that cannot be decomposed further

without irrecoverable loss of information are called indivisible rules, atomic rules, or

irreducible facts (Ross, R. G. (1997), Krifka, M. (WS 2000-2001)).

Irreducible facts embody pivotal information and constitute the root of coordinated

requirements. These irreducible facts are woven together to create normalized knowledge.

Normalized knowledge can then be utilized to coordinate complex activities in

transnational corporations and hybrid offshore models such as the 24-Hour Knowledge

Factory (24HrKF) discussed later in this paper. In the legacy systems of today, the

process of making a single change opens up Pandora’s Box, primarily because irreducible

facts are scattered across systems. By finding better ways for representing irreducible

facts, one can potentially mitigate the problem of uncontrolled chain reactions caused by

change.
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In the real world, every object conveys information. The information content of physical

objects is conveyed to us via one or more of our five senses. Objects are associated with

one another. While some associations involve the passage of time, other associations,

such as the relative locations of physical objects, are relationships that do not necessarily

involve time. These relationships and associations are natural storehouses of information

about real world objects. Further, these relationships are objects in their own right.

As an example of how objects may be natural repositories of information, consider a

person who is employed by an organization. As an abstraction, this person exists as an

object within the organizational structure of the organization. Let us call this object as

Employee. While the notion of an Employee object is abstract, it is rooted in the real

world by the existence of a physical employee, abstractly being an object we will call as

Person. Carrying the abstraction, Person has the properties of having been born, being a

living breathing mammal, and having a multitude of relationships to other objects in the

real world. Once a person is employed by an organization, the object Person gains a

relationship to Employee. The properties specific to Employee may contain team

membership, and relationships to other entities may be lost or gained by joining or

disjoining teams or being promoted. While these objects are concepts, abstracted from

reality, they contain valuable information about behavior and structure. In a

geographically dispersed environment, the informational content of these abstract objects

is of special significance. For example, consulting the properties of Employee, e.g. skill-

set and team membership, helps to assign responsibility to a specific set of modules that

can best be implemented by that particular Employee in a decentralized work

environment.

Processes are artifacts for expressing information about relationships that involve the

passage of time, i.e., those that involve before and after effects. As such, the process is

not only an association, but also an association that describes a causative temporal

sequence and passage of time. This is also how the meaning of causality is born: the

resources and the processes that create the product are its causes. A process always



makes a change or seeks information. Business process engineers use the term cycle time

to describe the time interval from the beginning of a process to its end. A process, like the

event it is derived from, can even be instantaneous or may continue on indefinitely.

Processes that do not end, or have no known end, are called Sagas. Therefore, a process is

a relationship, and also an event, which may be of finite, negligible, or endless duration.

Knowledge involves the recognition of patterns. Patterns involve structure, the concept of

similarity, and the ability to distinguish between the components that form a pattern.

Claude Shannon developed a quantitative measure for information content (Shannon,

1948). However, he did not describe the structure of information. For that, we must start

with the concept and fundamental structure of Pattern and measurability in order to build

a metamodel of knowledge. The integrated metamodel model of Pattern and

measurability (from which the concept of “property” emerges) will enable us to integrate

the three components that comprise business knowledge (inference, rules, and processes)

into one indivisible whole. The interplay between objects and processes is driven by

patterns. Patterns guide the creation of relationships between objects, such as the

formation of a team or the modular assignment of duties within a team and across

geographically distributed teams. Partnering Employee belonging to one team with that

of another is caused by a skill or performance pattern that governs the relevant properties

of Employee. As such, the ownership of an artifact under development is shared between

Employee objects, which, at a coarser granularity, exist as a unified object we can refer to

as a Composite Persona (CP) (Denny et al. 2008).
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When an object is a meaning, it is an abstract pattern of information. Its perception is a

concrete expression of this meaning, and the same information may be perceived or

expressed in many ways. Lacking perceptual information, several expressions or

perceptions may all point to the same pattern of information, or meaning. In order to

normalize knowledge, we must separate meaning from its expression. This may be done

by augmenting our metamodel to represent entities of pure information that exist beyond



physical objects and relationships. This section will introduce three of these objects:

Domain, Unit of Measure (UOM), and Format.

Unlike matter or energy, meaning is not located at a particular point in space and time;

only its expression is (Verdu, 1998). All physical objects or energy manifested at a

particular place at a point in time convey information, and the same meaning can occur in

two different artifacts that have no spatial or temporal relationship with each other. They

only share meaning, i.e., information content (Baggot, 1992). A single meaning may be

characterized by multiple expressions. Differing understandings of concepts, terminology,

and definitions are some of the problems that have characterize software developers

working in a multi-site environment (P. Wongthongtham, E. Chang, T.S. Dillon, I.

Sommerville 2006). Unlike a specific material object or a packet of energy that is bound

to only a single location at a single point in time, identical information can exist at many

different places at several different times. The need to understand the underlying natural

structures that connect information to its physical expressions is inherent in the effort to

normalize business rules.

Information mediation and expression within the real world is achieved by two

metaobjects. One is intangible, emerging from the concept of measurability and deals

with the amount of information that is inherent in the meaning being conveyed. The other

is tangible; it deals with the format – or physical form – of expression. The format is

easier to recognize, and many tools and techniques provide the ability to do so explicitly.

It is much harder to recognize the domain of measurability, henceforth referred to simply

as domain (Finkbeiner, 1966).
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Through the behavior, or properties, of objects we observe, the information content of

reality manifests itself to us. Although these are quite dissimilar qualities of inherently

dissimilar objects, such as a person’s weight and the volume of juice, both these values

are drawn from a domain of information that contains some common behavior. This



common behavior – that each value can be quantitatively measured – is inherent in the

information being conveyed by the measurement of these values, but not in the objects

themselves..
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Domains convey the concepts of measurability and existence. They are a key constituent

of knowledge. There are four fundamental domains that we will consider in this paper;

two of them convey qualitative information and the other two convey quantitative

information, as follows:

 Qualitative Domains, containing:

– Nominal Domains, which convey no information on sequencing, distances, or

ratios. They convey only distinctions, distinguishing one object from another or a

class from another (an object such as Person is distinct from an object such as

Equine).

– Ordinal Domains, which not only convey distinctions between objects but also

information on arranging its members in a sequence (a value is also an object,

hence the concept of magnitude may be deemed to start here). Ordinal domains

are a pattern of information derived from nominal domains by adding sequencing

information, which makes it a subclass of nominal domains in the ontology of the

meaning of measurability. However, ordinal domains posses no information

regarding the magnitudes of gaps or ratios between objects (values).

 Quantitative Domains:

– Difference-Scaled Domains not only express all the information that qualitative

domains convey, but also convey magnitudes of difference; they allow for

measurement of the magnitude of point-to-point differences in a sequence. This

makes difference-scaled domains to be a pattern of information derived from

ordinal domains by adding quantitative information on differences between values

in the domain, which makes it a subclass of ordinal domains in the ontology of the

meaning of measurability. Difference-scaled domains are “dense” domains, that is,

it will always be possible to locate a value between a pair of values in the in the

domain, no matter how close the values that constitute the pair are to each other.



As such, we may conceive of difference scaled domains as being derived from

ordinal domains by adding values to the domain until it becomes dense, and in

doing so, it acquires new behaviors. However, difference-scaled domains convey

no information about ratios between objects, because the domain does not contain

a value in it that one can call nil or zero.

– Ratio-Scaled Domains perform three functions; they assist in the classification

and arrangement of objects in a natural sequence, are able to measure the

magnitude of differences in properties of objects, and take the ratios of these

different properties. Ratio scaled domains always contain a natural zero. As such,

ratio-scaled domains have all the information that difference-scaled domains

convey, plus information on the nil value. This makes ratio-scaled domains a

pattern of information derived from difference scaled domains by adding

information, which makes it a subclass of difference scaled domains in the

ontology of the meaning of measurability.

The hierarchy of domains provides the most fundamental kind of knowledge reuse.

However, this information is still abstract. In order to give information a physical

expression, it must be physically formatted and recorded on some sort of medium. A

single piece of information must be recorded on at least one medium, and may be

recorded in many different formats. For example, different types of equines may be

coded as numbers (say, 1 for ‘Horse’ and 2 for ‘Zebra’), or as letters (say H for ‘Horse’

and Z for ‘Zebra’), or as pictures (say a brown equine for ‘Horse’ and a striped equine for

‘Zebra’). This information could also be written as a hexadecimal code on floppy disk

that only computers can read. This physical representation of information is its Format. A

Format is an item of information, which may be attached to a meaning, but is a distinct

component of information that should be distinguished from the abstract meaning it is

attached to.

A symbol is sufficient to physically represent the information conveyed by nominal and

ordinal domains. Of course, ordinal domains also carry sequencing information, and it

would make sense to map ordinal values to a naturally sequenced set of symbols like



digits or letters. (If there is no limit to the number of values in an ordinal domain,

obviously the set of 26 alphabets will not suffice, but numeric digits would, provided that

we understand that quantitative differences between numbers are meaningless.)

Unlike qualitative domains, quantitative domains need both symbols and units of measure

to physically express all the information they carry. This is because they are dense

domains, i.e., given a pair of values, regardless of how close they are to each other, it is

always possible to find a value in between them. A discrete set of symbols cannot convey

all the information in a quantitative domain. However, numbers have this characteristic of

being dense. Therefore, it is possible to map values in a dense domain to an arbitrary set

of numbers without losing information. These numbers may then be represented by

physical symbols such as decimal digits, roman numerals, or binary or octal numbers.

There may be many different mappings between values and numbers. For example, age

may be expressed in months, years, or days; a person’s age will be the same regardless of

the number used. To show that different numbers may express the same meaning, we

need a Unit of Measure (UOM). The UOM is the name of the specific map used to

express that meaning. Age in years, days, months, and hours are all different UOMs for

the elapsed time domain.

Both the number and UOM must be physically represented by a symbol to physically

format the information in a quantitative domain. Indeed, a UOM may be represented by

several different symbols. The UOM “Dollars”, for the money domain, may be

represented by the symbol “$” or the text “USD”. In general, a dense domain needs a pair

of symbols to fully represent the information in it: a symbol for the UOM and a symbol

for the number mapped to a value. We will call this pair the full format of the domain.

Domains, UOMs, and Formats are all objects that structure meaning. They are some of

the components from which the very concept of knowledge is assembled. The Metamodel

of Knowledge is a model of the meaning of knowledge built from abstract components.



Figure 2 depicts a semantic model. To understand the rules, we read along the connecting

lines to form a sentence. Starting with “Quantitative Domain”, for example, the sentence

reads ‘(A) Quantitative Domain is expressed by 1 or many Unit(s) of Measure.’ The

lower limit (1) on the occurrence of Unit of Measure highlights the fact that each

quantitative domain must possess at least one unit of measure. This is because the unit of

measure is not optional. A quantitative value cannot be expressed unless a unit of

measure can characterize it. The arrow that starts from, and loops back to, Unit of

Measure reads ‘Unit of Measure converts to none or at most 1 Unit of Measure.’

Conversion rules, such as those for currency conversion or distance conversion, reside in

the Metamodel of Knowledge. This relationship provides another example of a

metaobject (since relationships are objects too), and demonstrates how a metaobject can

facilitate the storage of the full set of conversion rules at a single place.
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The conversion rule is restricted to conversion from one UOM to only one other UOM;

this constraint is necessary to avoid redundancy and to normalize information. A single

conversion rule enables navigation from one UOM to any other arbitrary UOM, by

following a daisy chain of conversion rules. If you needed to convert yards to inches, and

you had only the conversion factor to feet, you could convert yards to feet by multiplying

by 3 and then to inches by multiplying by 12. The upper bound of one on the conversion

relationship in the metamodel also implies that if you add a new UOM to a domain, you

have to add only a single conversion rule to convert to any of the other UOMs, and that

such information will suffice to enable conversion to every UOM defined for that domain.
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Metaobjects help to normalize real world behavior by normalizing the irreducible facts

we discussed earlier. The metaobjects that we have discussed so far are: object; property;

relationship; process; event; domain; unit of measure (UOM); and format. The kind of

atomic rules normalized by each type of metaobject are summarized in Figure 3.
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The ontology in Figure 3 organizes objects in a hierarchy of meaning. Lower level

objects in the ontology are derived from objects at higher levels by adding information.

Figure 3 shows that the meaning of Process is configured by combining the meanings of

Relationship, an interaction between objects, with the meaning of Event, the flow of time.

This kind of relationship is special. It is called a subtyping relationship, and forms the

basis of the ontology. Subtyping relationships convey information from higher levels to

lower levels of an ontology. The lower level object becomes a special kind of higher-

level object. Figure 3 shows that Ratio Scaled Domain is a special kind of Domain



because of the chain of subtyping relationships that lead from Domain to Ratio Scaled

Domain via Quantitative Domain.

We now introduce two new metaobjects: the subtyping relationship and its corollary, the

Subtype. They serve as containers for encapsulating and normalizing knowledge, and as

conduits for sharing this knowledge with other objects. Shared behavior is normalized in

the supertype object, and automatically shared with subtypes by implication, through the

subtyping relationship. For example, aging, birthdays, gender, credit rating, names, ring

size, social security numbers, and telephone numbers are common to all persons. People

can be customers, employees, or both. The object class “Person” will normalize

information common to people, such as social security number and birthday, without

regard to the person being an employee, customer, or both. Subtypes will add specific

information that gives the object special, more specific meanings, which are distinct and

more restrictive than the meanings of their supertypes. For instance, Customer and

Employee are subtypes of Person. Employee adds the employment relationship with

another person or organization, while Customer has the same effect for the purchasing

relationship. This is the information that Employee and Customer normalize, and add to

the information conveyed by Person. They create new meanings by extending the

meaning of Person. This example demonstrates why subtypes, the subtyping relationship,

and inheritance are all needed to normalize information.

The information we lose when we ignore a subtyping hierarchy is information we might

have reused. For example, the irreducible fact that ratio scaled values may be arranged in

order of magnitude was inherited from ordinal domains. If we ignore this hierarchy in our

electronic knowledge repository, we will need to replicate the comparison operators of

the ordinal domain in ratio scaled domains. With the hierarchy, they will be automatically

inherited.
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The atomic rule is the most basic building block of knowledge, and the ultimate

repository of information. It is a rule that cannot be broken into smaller, simpler parts



without losing some of its meaning. The metaobjects of Figure 3 are the natural

repositories of knowledge. They provide the basis of real world meaning. Just as

molecules react with molecules in chemical reactions to produce molecules of new

substances with different properties from the original reagents, atomic rules may be built

from other atomic rules. As we enhance our business positions with product and process

innovation, some atomic rules will be reused. These rules are examples of those that can

act as reusable components of knowledge. In order to build specialized domains of

knowledge, entire structures and configurations may be reused. This is similar to

manufacturers creating reusable subassemblies to build machines from ordinary parts.

The end product may incorporate many versions and modifications of these reusable

subassemblies.
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The industrial revolution led to the concepts of assembly lines, shifts for factory workers,

and round-the-clock manufacturing. Advances in information systems now enable us to

envision the non-stop creation of new intellectual property using shifts of workers located

in different countries. More specifically, a 24-Hour Knowledge Factory (24HrKF) is

envisioned as an enterprise composed of three or more sites distributed around the globe

in a manner that at least one site is operational at any point of time (Gupta and Seshasai

2004). As the sun sets on one site, it rises on another with the work in progress being

handed off from the closing site to the opening site.

Earlier papers on the 24-HrKF have broadly classified professional work as being ill-

structured, semi-structured, or totally structured (Gupta and Seshasai 2007). CEOs,

presidents, and other heads of organizations usually deal with ill-structured work, the

pattern of which cannot be predicted in advance. This type of work cannot be easily

decomposed into subtasks that a shadow-CEO or a partner-CEO, located in a different

part of the world, can complete during the next shift. At the other end, work in industries

like call centers is well-structured and can be readily picked up by a colleague coming in

to work for the next shift and located in another part of the world. In between these two

extremes, there are many examples of semi-structured work where the overall endeavor



can be broken into subtasks and a person in the next shift can continue to work on the

incomplete task from the previous shift. Software development, in specific, and many IP

based industries in general, fall into this intermediate category.

In the conventional models of software development (Beck 1999, Boehm 1988,

Cockburn 2004, Coleman and Verbruggen 1998, Highsmith 2000, Poppendieck and

Poppendieck 2003, Rising 2000), tasks are usually divided on a “disparate” basis among

teams in different geographies; that is, one team in one part of geography developing one

module, and another team in other part of the geography developing the other module. In

this model, if one part of the project gets delayed, the developers working on this part end

up having to devote extra hours, typically by working late into the night. Colleagues

working on other parts of the project are unable to render help, because they are only

familiar with their respective parts of the project. In the 24HrKF paradigm, this problem

can be overcome by the “incremental” division of tasks between developers in different

geographies. The latter goal can be met only with sustained research of relevant

underlying issues, and the development of new agile and distributed software processes

that are specially geared for use in the 24HrKF environment. New methodologies are

needed to streamline the hand-off between the developer in one shift and the developer in

the next shift in order to communicate details of the task in progress, as well as pending

issues, in a very rapid and efficient manner in order to reduce the time spent in the hand-

off to the minimum possible. Further, new task allocation processes need to be developed

to address the reality that the developers will possess different skill sets and dissimilar

levels of productivity.
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The purpose of any business process is to improve the quality of the final product and

increase the productivity of the participating developers. Business processes are

implemented as sets of rules and procedures which guide the flow of knowledge as the

project under development evolves. Using software development as an example,

processes that have many rigid rules and procedures are known as 'high-ceremony.'

Tayloristic processes are typically high-ceremony. Software processes that have few rules



and procedures and allow for flexibility in application of those rules and procedures are

considered to be 'low-ceremony' and agile (Cockburn 2004, Highsmith 2000,

Poppendieck and Poppendieck 2003, Rising 2000).

The concept that allows for lateral communication between distributed teams in the

24HrKF and facilitates knowledge reuse and agility is the Composite Persona (CP). A CP

is a highly cohesive micro-team that, like a corporation, possesses simultaneous

properties of both individual and collective natures. That is, a composite persona to an

external observer has a unique name and acts as a singular entity, even though it is the

composition of several individuals. The individual members are distributed across

development sites. Using CPs, development proceeds much in the same manner as in a

more traditional, local process. Problems are decomposed into modules and classes as

they are when only single developers are assumed. However, when modules and classes

are assigned ownership, the owner of each artifact is no longer an individual developer

but rather a CP. Similarly, in the process of conflict resolution, discussion, and debate,

each CP contributes as a single entity. The lateral communication between distributed

teams is essentially the handoff. In a “follow the sun” setting, one team’s completion of

the daily tasks inevitably leads to a period of synchronization before the next team in the

handoff sequence can continue the work. In order to facilitate the handoff, the knowledge

artifacts that are created or modified must be communicated to the next team in a timely

and effective way. Knowledge reuse comes in the form of shared artifacts contained

within a knowledge repository that records relevant developer actions.
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Suchan and Hayzak (2001) found that a semantically rich database was useful in creating

a shared language and mental models. Multimind is a novel collaboration tool under

development and experimentation at the University of Arizona; it aims to provide a

semantically rich environment for developers collaborating using the CP method (Denny

et al. 2008). MultiMind aims to improve upon DiCE (Vin at al, 1993) and other

collaborative engineering tools.



Objects and events relevant to the project are posted and logged into a chronologically

ordered persistent database. This database, sometimes called a Lifestream (Freeman and

Gelernter 1996), incorporates an algebra that can be coupled to the semantics of project

artifacts and knowledge events to enable substantial automation of both mundane tasks

and higher-level functions. In the MultiMind tool, the Lifestream is used to archive

project artifacts and provide configuration management services in much the same

fashion as the Concurrent Versioning System (CVS) or the newer Subversion (SVN)

revision control system. MultiMind also observes and logs knowledge events into the

LifeStream. When a developer reads a message, posts a message, executes a search or

reads a web page, MultiMind logs this activity into the LifeStream. MultiMind can

therefore correlate knowledge events with the discrete evolutions of the project artifacts,

which allows for the reuse of relevant project knowledge between members of a CP.

Actions recorded by Multimind facilitate communication by encapsulating knowledge as

objects representing interactions with the developer’s environment. Developers in all

distributed locations can query Multimind to find the current state of each artifact under

their CP’s. More importantly, developers can also manually update the state of each

artifact. An example is shown in the following figure.

In this case, a code review checklist is presented along with the relevant code. A

developer performing the code review would generate responses to those queries that

cannot be automated. In this example, additional relevant review entries can be added to



further improve communication of salient knowledge items between teams. In the

handoff, the use of lightweight Scrum methods is prevalent. A Scrum is a stand-up

meeting pattern that attempts to ascertain the progress that was made in the prior shift, the

problems encountered in the prior shift, and the progress that will be made in the current

shift.

Automated and manual information gathering mechanisms can further be combined to

provide knowledge artifacts beyond communication facilitating ones. For example,

visualizing the current project state is simplified through use of Multimind objects. Since

it relies on LifeStream, which contains chronological information regarding each artifact,

a visualization of a project’s progress can easily be made, identifying those artifacts that

required the most maintenance, debugging, or synchronization from the CP. Business

decisions can be facilitated with use of Multimind’s LifeStream visualizations. Filtering

the Multimind queries to those artifacts that are relevant to a particular decision makes

this facilitation possible. Communication, visualization, and decision facilitation are

examples of knowledge reuse in the 24HrKF.
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Information Systems are built to satisfy business requirements. Sometimes they are

undertaken to implement purely technical changes (Smith and Fingar 2002). Although

requirements are the critical components of any information system, to this day, almost

half a century after business process automation first appeared, “Requirement” has

remained a nebulous concept in the industry. There is no common understanding, let

alone agreement, on what requirements really mean. Poorly formulated and ill-managed

requirements have led to many of the problems that Information Systems projects

currently face (Bahill, A.T. and Dean, F. (1999). Our first task, therefore, is to understand

the meaning and structure of requirements.

Requirements flow from knowledge. Knowledge is encapsulated in configurations of

atomic rules. Knowledge of Information Systems involves configurations of (atomic)



rules of business as well as technology. A four-layered hierarchical approach can be used,

as depicted in Figure 4.

Figure 4: The Architecture of Knowledge

Table 1 contains brief descriptions of each layer of the architecture of business

knowledge, examples of the kinds of policies that may be implemented at the layer, as

well as examples of change that may occur in that layer along with examples of the

effects of change within a particular layer.
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The top business layer helps to assemble components of knowledge into business

concepts, such as products, services, markets, regulations, and business practices.

Consider a situation where a telephone services provider wishes to integrate cable TV

and entertainment media into its business. Such changes in the Business Rules layer will

impact business functions and systems functionality, whereas changes to process

automation layers alone will impact only availability, timeliness, accuracy, reliability,

and presentation of information. Changes in business process automation, in turn, can

impose new requirements for performance, reliability and accuracy on technology

platforms, which will impact the technology layer.
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The level of Business Process Automation is usually changed to leverage information

technology or to focus on those processes that create most value while eliminating those

of little value. Changes in this layer seldom impact the fundamental business of the firm.

For example, the firm could deploy its ordering process on the web, but not make any

fundamental change in the nature of its products, services, or markets. Business Process

Automation refers to process innovation and change that leverages information

technology.

The technology layer is changed primarily to improve computer performance in terms of

speed, cost, reliability, availability or alignment, and support for Business Process

Automation.

The fundamental ideas of separating system-specific rules from software implementation,

as in the case of 3GL, and separating system architecture and implementation, as in the

case of System/360, are even more important today in the context of separating business

rules from implementation technologies. The rules related to transporting and presenting

the information would belong to the Business Process Automation layers, not the pure

business layer. Figure 4 shows that Business Process Automation consists of two layers.

The Information Logistics layer is the repository for rules related to the logistics of

moving and storing information in files, and the Interface layer is concerned with how

this information is presented to human operators.

Creating a business knowledge hierarchy such as the one depicted in Figure 4 facilitates

the flow of information between the business entities responsible for managing

knowledge. Organizing knowledge and information, as described in previous sections, is

essential for realizing the flow of information between the layers and creating meaningful

and useful relationships between objects within each layer.

Efforts to process and integrate information based on meaning have been made by the

W3C consortium, which recommended two modeling standards in 2004: RDF, the



Resource Description Framework for metadata, and OWL, the Web Ontology Language

for integrating information. We’ve seen examples of how some meanings are derived

from others by constraining patterns of information they convey to create new meanings.

These constrained patterns are subtypes of the meanings they constrain, and every

meaning is a polymorphism of the universal object, an unknown pattern in information

space that means everything and anything, and conveys nothing. Every object in the

inventory of components is a polymorphism of the universal metaobject. RDF and OWL

are tailored for the Web and applications of the Semantic Web. Tables 2, 3, and 4 show

that the various elements of RDF and OWL as well as their Metaobject Inventory

equivalents, showing that, in effect, the Metaobject Inventory provides a more general

framework than either RDF or OWL, and that either of the restricted frameworks are

special cases of the types of ontology frameworks that can be realized through the various

polymorphisms of the universal object.

Table 2 RDF Classes and their metaobject inventory equivalents.

ElementElementElement

Element

ClassClassClass

Class

ofofof

of

SubclassSubclassSubclass

Subclass

ofofof

of

MetaobjectMetaobjectMetaobject

Metaobject

InventoryInventoryInventory

Inventory

EquivalentEquivalentEquivalent

Equivalent

Class All classes All value
Datatype All Data types Class Domain, Meaning
Resource All resources Class Resource
Container (set of objects) All Containers Resource Aggregate Object
Collection(set membership is
restricted by some criteria)

All Collections Resource Object Class

Literal Values of text and numbers Resource Subtype of Symbol
List All Lists Resource List of
Property All Properties Resource Property, Feature
Statement All RDF Statements Resource Irreducible fact, rule,

atomic rule
Alt Containers of alternatives Container Mutability; Liskov’s

principle, aggregation of
mutable resources

Bag Unordered containers Container Aggregate Object
Seq Ordered containers Container Subtype of Aggregate

Object
ContainerMembershipProperty All Container membership

properties
Property Subtype of Relationship

XMLLiteral XML literal values Literal Subtype of symbol. XML is
a subtype of language.



Table 3 RDF Properties and their Metaobject Inventory equivalents

PropertyPropertyProperty

Property

OperatesOperatesOperates

Operates

ononon

on

ProducesProducesProduces

Produces

DescriptionDescriptionDescription

Description

MetaobjectMetaobjectMetaobject

Metaobject

InventoryInventoryInventory

Inventory

EquivalentEquivalentEquivalent

Equivalent

Domain Property Class The domain of the resource The domain defines what
a property may apply to (operate on).

Domain

Range Property Class The range of the resource. It defines what the property
may map to (produce).

co-domain

subPropertyOf Property Property The property of a property Feature
subClassOf Class Class Subtyping property Polymorphism
Comment Resource Literal User friendly resource description Elaboration, description, synonym
Label Resource Literal User friendly resource name Name, synonym
isDefinedBy Resource Resource Resource definition Id
seeAlso Resource Resource Additional information about a resource Elaboration, reference
Member Resource Resource The property of being an instance of a kind of

resource
Instance of

First List Resource The property of being the first member of a list A demiliting role: Lower Limit
Rest List List The second and subsequent members of a list Subtype of List
Subject Statement Resource The subject of an assertion, i.e., the subject of a

resource in an RDF statement
The source of a relationship

predicate Statement Resource Similar to “subject”: The predicate of an assertion Relationship, function
object Statement Resource The object of the resource (in an RDF) Statement The target of a relationship
value Resource Resource The value of a property Value
Type Resource Class An instance of a class Member of a class of classes

ClassClassClass

Class

DescriptionDescriptionDescription

Description

MetaobjectMetaobjectMetaobject

Metaobject

InventoryInventoryInventory

Inventory

EquivalentEquivalentEquivalent

Equivalent

AllDifferent all listed individuals are mutually
different

Subtype of Exclusion partition, exclusivity
constraint. The concept of distinctions emerges as a
polymorphism of the concept of class as
information is added o an object/pattern.

allValuesFrom All values of a property of class X are
drawn from class Y (or Y is a description
of X)

Domain, Inclusion Set, inclusion partition

AnnotationProperty Describes an annotation. OWL has
predefined the following kinds of
annotations, and users may add more:

 Versioninfo
 Label
 Comment
 Seealso
 Isdefinedby

OWL DL limits the object of an
annotation to data literals, a URIs, or
individuals (not an exhaustive set of
restrictions

Subtypes of Elaboration

Version is implicit in temporal objects. Audit
properties are implicit in object histories:
 The process, person, event, rule, reason and
automation that caused a state to change

 Time of state change
 Who made the change (All the dimensions of
process ownership: Responsibility, Authority,
Consultation, Work, Facilitation,
Information/knowledge of transition)

 When the change was made
 The instance of the process that caused the
change and the (instances of resources) that
were used

 Why it was made (the causal chain that led to
the process)

 How long it took to make the change

Label is implicit in synonym, name
Comment may be elaboration or reference. The two
are distinct in the metamodel of knowledge
See also: same remarks as comment.
IsDefinedBy may be elaboration, Object ID, or
existence dependency. Each is a distinct concept in
the metamodel of knowledge



ClassClassClass

Class

DescriptionDescriptionDescription

Description

MetaobjectMetaobjectMetaobject

Metaobject

InventoryInventoryInventory

Inventory

EquivalentEquivalentEquivalent

Equivalent

backwardCompatibleWith The ontology is a prior version of a
containing ontology, and is backward
compatible with it. All identifiers from
the previous version have the same
interpretations in the new version.

Part of Relationship between models or structures

cardinality Describes a class has exactly N
semantically distinct values of a property
(N is the value of the cardinality
constraint).

Cardinality

Class Asserts the existence of a class Object Class
complementOf Analogous to the Boolean “not” operator.

Asserts the existence of a class that
consists of individuals that are NOT
members of the class it is operating on.

Set negation, Excludes, Exclusion set, Exclusion
partition

DataRange Describes a data type by exhaustively
enumerating its instances (this construct
is not found in RDF or OWL Lite)

Inclusion set, exhaustive partition

DatatypeProperty Asserts the existence of a property Feature, relationship with a domain
DeprecatedClass Indicates that the class has been

preserved to ensure backward
compatibility and may be phased out in
the future. It should not be used in new
documents, but has been preserved to
make it easier for old data and
applications to migrate to the new
version

Interpretation. However, the specific OWL
interpretation of depreciated class is considered to
be a physical implementation of a real life business
meaning, outside the scope of a model of
knowledge that applies on the plane of pure
meanings.

DeprecatedProperty Similar to depreciated class See Depreciated Class
differentFrom Asserts that two individuals are not the

same
The concept of distinctions emerging as a
polymorphism of the concept of class as
information is added o an object/pattern.; subtype
of exclusion partition

disjointWith Asserts that the disjoint classes have no
common members

Exclusion partition

distinctMembers Members are all different from each
other

Exclusion Set, List

equivalentClass The classes have exactly the same set of
members. This is subtly different from
class equality, which asserts that two or
more classes have the same meaning
(asserted by the “sameAs” construct).
Class equivalence is a constraint that
forces members of one class to also
belong to another and vice-versa.

Mutual inclusion constraint/equality between
partitions or objects.

equivalentProperty Similar to equivalent class: i.e., different
properties must have the same values,
even if their meanings are different (for
instance, the length of a square must
equal its width).

Equality constraint

FunctionalProperty a property that can have only one, unique
value. For example, a property that
restricts the height to be non-zero is not a
functional property because it maps to an
infinite number of values for height.

Value of a property, singleton relationship between
an object and the domain of a property

hasValue Links a class to a value, which could be
an individual fact or identity, or a data
value (see RDF data types)

relationship with a domain



ClassClassClass

Class

DescriptionDescriptionDescription

Description

MetaobjectMetaobjectMetaobject

Metaobject

InventoryInventoryInventory

Inventory

EquivalentEquivalentEquivalent

Equivalent

imports References another OWL ontology.
Meanings in the imported ontology
become a part of the importing ontology.
Each importing reference has a URI that
locates the imported ontology. If
ontologies import each other, they
become identical, and imports are
transitive.

Subtype of Composed of. Note that the metamodel
of knowledge does not reference URIs. This is an
implementation specific to the Web. The
Metamodel of Knowledge deals with meanings.

incompatibleWith The opposite of backward compatibility.
Documents must be changed to comply
with the new ontology.

Reinterpretation, Intransitive Relationship,
asymmetrical relationships

intersectionOf Similar to set intersection. Members are
common to all intersecting classes.

Subtype of Partition, subtype with multiple parents,
set intersection

InverseFunctionalProperty Inverses must map back to a unique
value. Inverse Functional properties
cannot be many-to-one or many-to-many
mappings

Inverse of an injective or bijective relationship

inverseOf The inverse relationship (mapping) of a
property from the target (result) to the
source (argument)

Inverse of

maxCardinality An upper bound on cardinality (may be
“many”, i.e., any finite value)

Cardinality constraint:, upper bound on cardinality
(subtype of cardinality constraint and upper bound)

minCardinality A lower bound on cardinality Cardinality constraint: Lower bound on cardinality
(subtype of cardinality constraint and lower bound)

Nothing The empty set of the empty set, null value
ObjectProperty Instances of properties are not single

elements, but may be subject-object pairs
of property statements, and properties
may be subtyped (extended).
ObjectProperty asserts the existence and
characteristics of properties:

 RDF Schema constructs:
rdfs:subPropertyOf,
rdfs:domain and rdfs:range

 relations to other properties:
owl:equivalentProperty and
owl:inverseOf

 global cardinality constraints:
owl:FunctionalProperty and
owl:InverseFunctionalProperty

 logical property characteristics:
owl:SymmetricProperty and
owl:TransitiveProperty

Property, a generalized constraint, which implies an
information payload added to a meaning.

oneOf The only individuals, no more and no
less, that are the instances of the class

members of a class, the property of exhaustivity of
a partition

onProperty Asserts a restriction on a property constraint on a Feature (makes the feature (object)
a subtype of the unconstrained, or less constrained
feature (object)

Ontology An ontology is a resource, so it may be
described using OWL and non-OWL
ontologies

The concept of deriving subclasses by adding
information to parent classes

OntologyProperty A property of the ontolology in question.
See imports.

None, beyond the fact that the ontologoly is an
object, which means that it inherits all properties of
objects, and adds the property of interpretation



Table 4 OWL Classes and their Metaobject Inventory equivalents.
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ConclusionsConclusionsConclusions

Conclusions

In an effort to provide a framework for surmounting the temporal and spatial separations

in collaborative, distributed environments, this paper presents a framework for

knowledge object management that facilitates knowledge reuse. Specific cases of

practical applications of knowledge reuse are given through discussions of early industry

efforts to this end and the 24-Hour Knowledge Factory concept currently under

development. The encapsulation of knowledge for distributed environments is also

shown to be essential in the proposed architecture of business knowledge which in turn

facilitates the understanding of concepts and terminologies used by different teams. The

ClassClassClass

Class

DescriptionDescriptionDescription

Description

MetaobjectMetaobjectMetaobject

Metaobject

InventoryInventoryInventory

Inventory

EquivalentEquivalentEquivalent

Equivalent

priorVersion Refers to a prior version of an ontology An instance of Object Property where a relevant
instance of ontology Object Class exists, containing
a Temporal Succession of concepts. The property
of reinterpretation is implicit between versions of
an ontology.

Restriction Restricts or constrains a property. May
lead to property equivalence,
polymorphisms, value constraints, set
operations, etc.

Rule Constraint

sameAs Asserts that individuals have the same
identity. Naming differences are merely
synonyms

Set Equality, Identity

someValuesFrom Asserts that there exists at least one item
that satisfies a criterion. Mathematically,
it asserts that at least one individual in
the domain of the “SomeValuesFrom”
operator that maps to the range of that
operator.

Subsetting constraint

SymmetricProperty When a property and its inverse mean the
same thing (e.g., if Jane is a relative of
John, then John is also a relative of Jane)

Symmetry

Thing The set of all individuals. Instance of Object Class
TransitiveProperty If A is related to B via property P1, and

B is related to C via property P2, then A
is also related to C via property P1. For
example. If a person lives in a house, and
the house is located in a town, it may be
inferred that the person lives in the town
because “Lives in” is transitive with
“Located in”.

Transitive Relationship

unionOf Set union. A member may belong to any
of the sets in the union to be a member of
the resulting set

offset Untion, Aggregation

versionInfo Provides information about the version Instance of Attribute. Implicit in the concept of the
history of a temporal object



knowledge encapsulation allows for a four-tier architecture that facilitates knowledge

transfer and reuse while facilitating the understanding of the problem domain under

consideration. Differences in training, knowledge and skills that exist across the

distributed teams are surmounted by use of a common means of discourse about the

problem domain under consideration provided by the tools and mechanisms developed

for the 24-Hour Knowledge Factory.
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ForForFor

For

FurtherFurtherFurther

Further

ReadingReadingReading

Reading

The concepts described here have been utilized and extended in this paper to cater

specifically to the special needs of offshoring and 24-Hour Knowledge Factory

environments. For a detailed discussion of the basic concepts and their wider applications,

please refer to the following books by Amit Mitra and Dr. Amar Gupta:

 Agile Systems with Reusable Patterns of Business Knowledge - a

Component Based Approach

 Creating Agile Business Systems with Reusable Knowledge

 Knowledge Reuse and Agile Processes – Catalysts for Innovation
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